Reg. No.:			

Question Paper Code: 21176

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Third Semester

Electronics and Communication Engineering

EC 1201 — DIGITAL ELECTRONICS

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Implement the Ex-OR gate using NOR gate.
- 2. Find the complement of the function $F = \overline{x}y\overline{z} + \overline{x} \overline{y}z$.
- 3. Draw the inverter logic circuit using n-channel MOS devices.
- 4. What is totem-pole output?
- 5. What is encoder?
- 6. What is magnitude comparator?
- 7. Which flip flop is most suitable (manipulating excitation table easily) for the design of counter and which one is best for shift register design?
- 8. Distinguish between synchronous and asynchronous sequential circuits.
- 9. Enumerate the types of ROMs.
- 10. Compare PAL and PLA devices.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Using DeMorgan's theorem, convert the following Boolean expression to equivalent expression that has only OR and complement operations and also implement the function with only OR gates and inverters $F = \overline{xy} + \overline{xz} + \overline{yz}$. (8)
 - (ii) Simplify the Boolean function to a minimum number of literals using Boolean algebra and obtain its truth table.

$$G = x\overline{y}z + \overline{x} \ \overline{y}z + \overline{w}xy + w\overline{x}y + wxy. \tag{8}$$

Or

(b) Simplify the function and implement with two-level NOR gate circuit $F(q,r,s,t) = \sum_{i=0}^{\infty} (5,6,9,10)$.

12:	(a)	(i)	Draw the RTL — NOR2 gate and explain its operation.	(8)				
		(ii)	Explain in detail the Emitter-Coupled Logic.	(8)				
			Or					
	(b)	(i)	Write an elaborate note on Transistor-Transistor Logic.	(8)				
		(ii)	Draw the NAND gate and NOR gate using n-channel MOS devand explain its operation in detail.	vice (8)				
13.	(a)	Implement the following Boolean function with an 8×1 multiples $F(A,B,C,D) = \sum (0,3,5,6,8,9,14,15)$.						
			Or					
	(b)	(i)	Design the BCD to excess-3 code converter circuit using logic gate	es. (10)				
		(ii)	A 3-bit message need to be transmitted together with an exparity bit. Design a 3-bit even parity generator circuit for this detransmission.					
14.	(a)		gn a counter with the following repeated binary sequence: 0, 1, 3, g T flip-flops. Treat the unused states as don't-care conditions.	5, 7				
			Or					
	(b)	Desc	ribe the shift register in detail.					
15.	(a)	Disc	uss the programmable Logic Array (PLA) in detail.					
			Or					
	(b)	Writ	e an elaborate note on					
		(i)	Static RAM cell.	(8)				
		(ii)	Field programmable Gate Arrays (FPGA).	(8)				